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Abstract

The current expansion of seaweed farming to North America
and Europe can be a cornerstone in a new “blue bioeconomy”
in the Northern Hemisphere. In this domain, the focus of R&D
efforts is on creating value-added products through new biore-
fining processes for valorizing the unique polysaccharides
of seaweeds. Apart from direct consumption of seaweeds as
food—particularly in the Asian cuisine—commercial sea-
weed products are primarily natural hydrocolloids used to
make viscous suspensions and gels, but new valuable prod-
ucts exerting bioactivity are coming into focus. This recent
development rests on targeted, gentle extraction and modifi-
cation of the seaweed polysaccharides using tailormade
bioprocessing enzyme technologies. Since brown seaweed
cultivation is rising in the Northern Hemisphere, this article
provides an overview of recent advances and prospects in
brown seaweed biorefining.
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Current and Future Products Based
on Seaweeds
ultivation of seaweeds has substantial environmental,
climate, and socioeconomic benefits. A recent esti
mate predicts that enhanced seaweed farming has
significant growth potential and can contribute to at
least 9 of the 17 U.N. Sustainable Development Goals helping
to shape a sustainable, livable planet." Consumption of sea-
weeds has increased globally because of new food trends, but it
is the polysaccharides of seaweeds, i.e., agar, alginate, and car-
rageenans, that are the main commercial drivers of seaweed
cultivation. These polysaccharides have for decades been
extracted from certain seaweed species and used for their
unique hydrocolloid properties as thickeners, stabilizers, and
gelation agents in food, personal care, biotech, and pharmaceu-
tical applications. Presently, commercial objectives target
increased cultivation of seaweeds for production of the estab-
lished seaweed-derived hydrocolloids. In the longer term, how-
ever, enhanced use of seaweeds as a resource is predicted to
involve targeted biorefining with tailored production of poly-
and oligosaccharides for a broader spectrum of applications
including high-value functional, nutritional, and biomedical
products as well as functional additives in novel materials as
listed below:

« Gut health and immune modulation®>

- Antibacterial®

- Antidiabetic*

« Anti-osteoporotic action®

« Cosmetics/cosmeceuticals’

- Construction materials®

« Food packaging and coating materials’

« Polysaccharides for three-dimensional printing®
- Plant stimulants®

New types of enzyme-based processing, extraction, and modi-
fication of the specific polysaccharides of seaweeds involve gen-
tle biorefining for producing tailormade oligosaccharides with
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specific functions and beneficial effects, which can be exploited
for different purposes. Enzyme-based methods are thus being
explored for both targeted extraction of specific polysaccharides
from seaweeds and for modification of the polysaccharides after
extraction. Application of enzymes to modify the polysaccha-
rides gives more uniform products to help ensure consistent
functionality and potentially higher value products.

Brown Macroalgae Production

Currently, Asian countries account for about 98% of the
global production of seaweeds, but seaweed production has
lately gained increased attention in Europe and North Amer-
ica.! The most common commercially used (mostly cultivated)
brown macroalgae are kelps belonging to the genera Saccha-
rina, Laminaria, Macrocystis, Undaria, and Alaria within the
order Laminariales. In addition, brown algae species within the
Fucales order (Fucus, Sargassum, Durvillaea) are also pro-
duced commercially.

The polysaccharide and biochemical compositions of brown
kelp seaweeds vary among species and season, and several fac-
tors, including water temperature, affect the chemical composi-
tion.'” The temperate waters of the Atlantic and Pacific oceans
are well suited for growing kelp, as the long days and clear
water provide optimal light and temperature conditions during
the summer and the cold water reduces the risk of fouling of
the kelp by epibionts.'' Cultivation of seaweeds moreover pro-
vides ecosystem service due to the uptake of carbon dioxide,
which mitigates climate change. Seaweeds may also provide
shelter to marine organisms, reduce sediment resuspension,
release oxygen, and absorb nutrients from the water, which
contributes to mitigating algal blooms and the resulting oxygen
depletion.'? These factors provide the foundation for the cur-
rent expansion of seaweed farming to the Northern Hemi-
sphere, as well as the prospects for establishing a new “blue
bioeconomy” in North America and Europe based on this new
seaweed farming.

Extraction and Purification of Polysaccharides
from Brown Seaweeds

Commercial extraction methods for seaweed hydrocolloids
rely on a combination of heating and chemical treatment—the
latter to change the pH and thus viscosity of the polysaccharide
suspension. However, many different alternative extraction
methods have been suggested to secure high yield, partial frac-
tionation, and purity of polysaccharides extracted from sea-
weeds; these include ultrasound, microwaves, pressure, and
supercritical conditions (Table I). Techniques such as pressur-
ized liquid extraction (also known as subcritical water extrac-
tion) and supercritical fluid extraction are better suited for
extraction of smaller molecular substances than polysaccha-
rides from seaweeds. Other advanced techniques such as
pulsed electric fields and ultrasound-assisted extraction
methods have also been suggested in the literature.'*'” Sev-
eral of these methods will both extract and partially fraction-
ate the polysaccharides, because the chemical structure of
the polysaccharides may be affected during the extraction
treatment.'* This aspect has recently come into focus with
biorefining of the seaweeds, i.e., when utilization of differ-
ent types of polysaccharides and substances from the sea-
weeds is being explored. In general, mainly due to their
higher cost and more advanced equipment requirements, the
industrial implementation of alternative physical methods is
not widespread.

For separation, purification, and concentration of the sea-
weed polysaccharide products, classical downstream techni-
ques such as centrifugation, membrane technology, and
chromatography are used.'®'® Extraction of alginate using
classical pH manipulation for viscosity adjustment and Ca**-
driven precipitation has so far dominated the process develop-
ment. Fouling can be a severe issue in membrane technology
with polysaccharides, but may gain traction in cascade valori-
zation processes for concentration and fractionation of alginate
and fucoidan present in liquid side streams after alginate sepa-
ration.?° Ton exchange chromatography is well suited for pre-
paring homogeneous oligosaccharide populations of similar

Table 1. Physicochemical Methods for Extraction, Fractionation, and Purification of Seaweed Polysaccharides

METHOD PRINCIPLE

Chemical extraction

(acidic or alkaline conditions) Environmentally hazardous

Degrades polysaccharide linkages, leading to oligo/polysaccharides. Unspecific cleavage; desulfation.

DESCRIPTION REFERENCES

Physicochemical fractionation Precipitation with organic solvents such as ethanol, or by specific cationic salts, e.g., CaCl, or quaternary T
ammonium salts
Ultrasound-assisted extraction Implosion creates extremely high local temperatures (up to 4500°C) and pressure (about 50 MPa), LIS
causing disruption of cell walls and cell membranes, in turn releasing polysaccharides
13,16

Microwave-assisted extraction

Electromagnetic radiation causes heat-induced disruption of the cell walls and cell membranes to
release polysaccharides. Risk of undesirable polysaccharide modification, e.g., deacetylation

Supercritical fluid extraction

At supercritical conditions (~31°C, 74 MPa) CO, forms a liquid that can be used to extract chemical
compounds from a matrix. By changing the pressure, different compounds can be extracted

Pressurized liquid extraction
extraction of the target compounds

Liquid solvent used under high temperature (50-200°C) and pressure (3.5-20 MPa) to accelerate
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chain length; however, large-scale implementation may be
hampered by the low throughput of this technology.'®

While the chemical and physicochemical methods have been
optimized for extracting specific polysaccharides, notably algi-
nate, the classical protocols are essentially unspecific, cannot
capture specific structural intricacies, and are moreover consid-
ered environmentally unsustainable. To obtain higher value
products, enzymatic extraction has been shown to have
potential.'>%!

Through selective biocatalysis, enzymes can thus provide
the specificity needed to produce specific native products with
high purity in an environmentally friendly manner, and be used
to upgrade and tailor-make the polysaccharides for higher
value applications via specific modifications (Table 2).

Brown Macroalgae Polysaccharides

The main polysaccharide structures of brown seaweeds
(Phaeophyceae) include the storage polysaccharide laminarin,
as well as the cell wall polysaccharides alginate and fucoidan.
In addition, brown seaweed cell walls may contain some cellu-
lose. Genome annotation evidence has confirmed that path-
ways for sucrose, starch, and glycogen synthesis are absent in
this type of seaweed.?® Due to their different structures and
properties, the three main, distinct types of polysaccharides
from brown seaweeds, alginate, fucoidan, and laminarin, are
used in very different applications (Table 3).

Alginate and Enzymatic Modification of Alginate

Alginate is a family of unbranched uronic acid polysaccha-
rides consisting of -p-mannuronic acid (M) and o-L-guluronic
acid (G) linked by 1,4-glycosidic bonds. The ratio of M to G dif-
fers between algal species and during the life cycle and season
within the same individual. Consecutive stretches of Ms are
referred to as M-blocks, consecutive stretches of Gs are referred
to as G-blocks, while strictly alternating M- and G-residues are
referred to as MG-blocks. G-blocks and MG-blocks may be
cross-linked by divalent cations, typically Ca®*, which causes gel
formation (also in the seaweed cell walls). Alginate has high indus-
trial usage, primarily in the food industry, where its gelling,
viscosity-enhancing, and stabilizing properties are exploited for

ENZYMATIC BROWN SEAWEED PROCESSING

improving food and drinks texture and for packaging films. Algi-
nates are food additives and are generally recognized as safe by the
U.S. Food and Drug Administration and the European Food
Safety Authority (EFSA). They have the following E numbers
in the European Union: E 400 (alginic acid), E 401 (sodium
alginate), E 403 (ammonium alginate), E 404 (calcium algi-
nate), and E 405 (propane-1,2-diol alginate). Alginate is also
used in the pharmaceutical industry for drug encapsulation,
wound dressing, and tissue engineering, as well as in the tex-
tile printing and paper industries.?’

Depolymerization of alginate is mediated by alginate lyases. In
the database of carbohydrate-active enzymes (www.cazy.org),
alginate lyases have been categorized in 12 different polysaccha-
ride lyase families, and they are found in both eucaryotic and pro-
caryotic organisms.”® The majority of categorized alginate lyases
cleave internal bonds in the alginate sequence, i.e., work as endo-
acting enzymes, but some have been shown to be exo-acting,
cleaving single monomers from the end of the polymer.?’ The
enzymes catalyze depolymerization of alginate by ff-elimination,
eventually resulting in monomeric 4-deoxy-l-erythro-5-hexoseulose
uronic acid, which is converted to pyruvate and glyceraldehyde-
1-phosphate. Alginate lyases either targets M-blocks (EC 4.2.2.11)
and G-blocks (EC 4.2.2.3) or cleaves the bonds between M and G
(and G and M) residues.*

f-D-Mannuronic acid and o-L-guluronic acid are C-5 epi-
mers, and these can be interconverted by epimerases, which
will change the gel-forming properties of the alginate. Alginate
is synthesized by the polymerization of D-mannuronic acid
whereupon mannuronan C5-epimerase (EC 5.1.3.37) converts
some residues to L-guluronic acid.>® Most characterized alginate
epimerases are of bacterial origin, but alginate epimerases from
brown seaweeds have been heterologously expressed in Esche-
richia coli to confirm their ability to convert M to G in
alginate >

Acetylation of alginate appears to improve the ability of the
alginate to work as a protective film.> Acetylation will also
work as a steric hindrance for epimerases.” The mannuronan
C-5-epimerase from Pseudomonas syringae, denoted PsmE,
has been shown to harbor a unique N-region that has acetylhy-
drolase activity, enabling the enzyme to deacetylate M residues
and convert them to G residues.”>** The ratio between M and

Table 2. Examples of the Use of Enzymes for Targeted Extraction, Modification, and Purification of Brown Seaweed
Polysaccharides

PURPOSE

Gentle fucoidan extraction: Enzymatic removal of
unwanted polysaccharides

Enzymatic removal of alginate and laminarin from fucoidan extracts

APPROACH REFERENCES

21

Enzymatic production of oligosaccharides for
increased physiological effects

Depolymerization of laminarin into bioactive oligosaccharides that can stimulate human
monocytes to produce TNF-a cytokines

22

Extraction of bioactive fractions from seaweeds

Sequential use of cellulases and proteases for extraction of functional fractions from
different types of seaweeds

23

Enzymatic de-sulfation of fucoidan

Targeted removal of sulfate groups from fucoidan

24

Enzymatic change of viscosity

Converting M alginate to G alginate using deacetylase and epimerase

25
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Table 3. Signature Structures and Examples of Application Targets of the Main Polysaccharides of Brown Seaweeds (Main
Seaweed Source Species Given for Each Type of Polysaccharide)

TYPICAL SEAWEED TYPE OF

SOURCE CARBOHYDRATE MAIN STRUCTURAL CHARACTERISTICS APPLICATION

Laminaria spp. Alginate Gelation

Saccharina spp. Viscosity

Fucus spp. Fucoidan Various potential

Saccharina spp. pharmaceutical uses

Laminaria spp. Laminarin Plant stimulant

Saccharina spp. Potential immune-boosting
uses

G residues can also be manipulated by selectively removing M
residues with mannuronan-specific lyases. One such example
is the exo-acting PL8 enzyme PsMan8A from the marine fun-
gus Paradendryphiella salina, which specifically attacks
polyM sequences without attacking polyG or mixed alginate
sequences.

LAMINARIN AND ENZYMATIC UPGRADING FOR
ENHANCED FUNCTIONALITY

Laminarin is a mixed f-1,3(1,6)-linkage glucan with f-(1-3)-
linked glucose units interspersed sporadically with f3-1,6 branch-
ing points (Table 3) or f-1,6 kinks in the backbone chain. The
laminarin glucan chain may be capped with mannitol at C1 of the
glucose residue in the reducing end. The laminarin f-glucans
form both soluble and insoluble fractions after water-based extrac-
tions of brown seaweeds. Detailed structures have only been
resolved in few cases. The structure is species dependent and the
ratio between f-1,6 and f-1,3 linkages varies: it is very low in
Laminaria hyperborea, as the laminarin mainly contains f3-1,3-
linkages36; moderate in laminarin from Laminaria digitata, with a
ratio of ~ 1:7; and high in laminarin from Eisenia bicyclis, with a
ratio of f-1,6 to f-1,3 linkages of ~ 1:3-2:3.°"% Laminarin
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typically has an average molecular weight of 2000-5000 Da (up
to 7000 Da), i.e., a degree of polymerization of ~ 20-40, depend-
ing on the brown seaweed species.*

Laminarin is degraded by the endo-acting 1,3-f-glucanases
(laminarinases) (EC 3.2.1.39 and EC 3.2.1.6) that cleave the lami-
narin into oligosaccharides and the exo-acting 1,3-f-glucosidases
(EC 3.2.1.58) that cleave off glucose residues form the nonreduc-
ing end. Laminarinases are categorized in 14 different glycoside
hydrolase (GH) CAZy families in the open CAZy database
(www.cazy.org), whereas 1,3-f-glucosidases are found in eight
CAZy families.?® Side chains linked by f-1,6 linkages can be
removed by f3-1,6-glucanases (EC 3.2.1.75) that belong to CAZy
families GH5 and GH30.*®

Enzymatic transglycosylation, which results in the formation
of new glycoside or oligosaccharide products, is catalyzed by
certain retaining GHs, which can use acceptors other than
water (i.e., carbohydrates). Transglycosylation reactions with
laminarin take place in two steps: first, the enzyme cleaves a
donor f-glucan; second, the part containing the nonreducin%
end is added to an acceptor f-glucan with a f-1,6 linkage.”
Bacterial GH17 glucanosyltransferases have been found in a
relatively narrow spectrum of bacteria, mostly Proteobacteria
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and Bacteroidetes. The particular enzyme GIt20 from Bradyr-
hizobium diazoefficiens cleaves off two terminal glucose resi-
dues from the reducing end of laminarin oligosaccharides and
then transfers the remaining part of the molecule to an acceptor
laminarin oligosaccharide with a f-1,6-linkage. The newly
formed branch may then be used as the acceptor for a new
transfer event, and this can be repeated a third time to produce
highly branched end products.*’ Other characterized bacterial
GHI17 glucanosyltransferases active on f-1,3-glucans include
the enzymes Gltl, Glt3, and Glt7, of which GIt7 shows the
highest capability of making f-1,6 branches on laminarin
acceptors, whereas notably Gltl mainly elongates laminarin
acceptors via ff-1,3 linkages of transferred oligosaccharides.**
The AfBgt2p glucanosyltransferase from Aspergillus fumigatus
always transfers the cleaved-off -glucan to an internal glucose
residue of the acceptor molecule, resulting in a branched f-glu-
can. In contrast, AfBgtlp from A. fumigatus and the ScBgl2p
from yeast transfer the liberated f-glucan (laminaribiose in
case of laminarin) to the terminal glucose residue of the nonre-
ducing end of the acceptor molecule, producing an elongated,
kinked f-(1,3;1,6)-glucan.*

p-Glucans from cereals, seaweed, fungi, and cyanobacteria
are marketed as food supplements in the form of crude extracts
or powders. In general, ff-1,3(1,6)-glucans are presumed to have
a range of biological activities for applications in nutraceuticals,
pharmaceuticals, and cosmeceuticals.*> Laminarin seems to act
as a modulator of gut intestinal metabolism through short-chain
fatty acid production, especially butyrate, accomplished by the
gut microbiota.** Yeast-derived fS-glucans consist of complex,
high-molecular-mass polysaccharides derived from the cell wall
of baker’s yeast Saccharomyces cerevisiae. Like laminarin,
yeast ff-glucans comprise a f-1,3-linked glucan backbone with
p-1,3 glucan branches linked to the backbone via f-(1,6) glyco-
sidic linkages. Yeast f-glucans are considered safe as food sup-
plements at dose levels of up to 375 mg per day and in foods for
particular nutritional uses even at dose levels of up to 600 mg
per day.* Purified yeast f-glucans have been shown to activate
innate immune effector cells in human blood samples, triggering
a coordinated anticancer immune response via complex formation
with anti-f-glucan antibodies.*®*” The precise determinants of
potency are not completely resolved, but the activities seem to
relate to molecular size and the content of 1,6 linkages, and
appear to be confined to f-1,3-glucans including f-1,3(1,6) glu-
cans and not f-1,3-1,4 mixed linkage glucans.*® Indeed, about 20
years ago, enzymatically depolymerized low-molecular-mass lam-
inarin (from L. digitata) was reported to inhibit the proliferation
of human leukemia cells in vitro, whereas the original laminarin
had only little activity.”* More preclinical mechanistic understand-
ing of the putative structure-function benefits of laminarin is
clearly required, but the available bioactivity findings on lami-
narin and yeast f-glucans provide interesting options for new,
potent high-value uses of laminarin.

FUCOIDAN POLYSACCHARIDES AND THEIR
ENZYMATIC MODIFICATION

Fucoidan polysaccharides are a part of the cell walls of brown
seaweeds and designate a family of sulfated polysaccharides
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having a backbone rich in fucose residues, specifically o-L-fuco-
syls. Recently, fucoidans have been shown to resist degradation
and aggregate into particulate organic matter that will eventually
sink ‘tg the bottom of the sea thus potentially working as a carbon
sink.

The fucoidan polysaccharides are highly diverse molecules
and may be classified into the following five groups based on
their monosaccharide composition and backbone linkage types:
group 1, polymers of a-1,3-L-fucose; group 2, polymers of
repeating o-1,3- and a-1,4-L-fucose residues; group 3, galacto-
fucans and fucogalactans; group 4, fucoidans with backbones
that in addition to fucose and galactose also contain mannose
and uronic acids; and group 5, fucoidans with fucose, galac-
tose, mannose, xylose, glucose, arabinose, and uronic acids.>®
Fucoidans are moreover often branched and acetylated, and
sulfations are found on C2, C3, or C4, or combinations thereof.
The diversity of fucoidan structures is reflected in the large
variation of activity that different fucoidans exert in bioactivity
assays. The available data do not provide firm correlations
between activity and molecular weight of the fucoidan, level of
sulfation, or the content of specific monosaccharides. Rather, it
appears that different properties of the fucoidans are relevant
for mediating their biological effects in the different physiolog-
ical processes investigated in the assays.

Fucoidanases catalyze the depolymerization of fucoidan.
Endo-acting fucoidanases (EC 3.2.1.211 endo-a-1,3-L-fucanase;
EC 3.2.1.212 endo-a-1,4-L-fucanase) cleave within the fucoidan
molecule thus producing fucoidan oligosaccharides of varying
lengths. So far, only about 18 endo-fucoidanases have been
characterized, i.e., 17 belonging to family GH107 and 1 to fam-
ily GH168 (www.cazy.org). In the past few years, several new
endo-acting fucoidanases, notably of family GH107, have been
discovered, and a few have even been structurally characterized
(Table 4). A recent finding of a new type of endo-1,3-fucanase
has laid the foundation of family GH174, a new GH family in
the CAZy database®®>° (Table 4).

Endo-fucoidan-lyases. Besides fucoidanases, fucoidan can also
be degraded by endo-acting, bacterial fucoidan-lyases. Two
such enzymes have been described so far, FAIA and FdIB.
Both enzymes can degrade fucoglucuronomannan from Kjell-
maniella crassifolia (Kj-fucoidan)®* and have also been found
to have activity on galactofucan from Sargassum mcclurei.®®
Currently, among these two, only FdlIA is recognized as a
characterized fucoidan lyase of family PL43. FdlA appears to
cleave the o-1,4-linkage between pD-mannose and D-glucuronic
acid in Kj-fucoidan; this type of fucoidan has a branc-
hed sulfated fucose linked on the C-3 hydroxyl group of
p-mannose.®!%?

Exo-acting o-fucosidases are found in CAZy families GH29,
GH95, GH139, GH141, and GHI151, while fS-fucosidases are
found in families GH1 and GH30. The natural substrates of most
of these enzymes are fucosyl groups on glycoproteins or oligosac-
charides such as human milk oligosaccharides and Lewis anti-
gens. Fucosidases isolated from Wenyingzhuangia fucanilytica
have, however, shown activity toward fucooligosaccharides and
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Table 4. Cleavage Points in Fucoidan (in Bold) and CAZy Family Affiliation of Endo-Acting, Microbial Fucoidanases, and the
Sole Characterized Fucoidan Lyase, FdIA

CLEAVAGE SITE (BOLD)

ENZYME ACRONYM

CAZY FAMILY REFERENCES

—3)-a-L-Fucp2S-(1—4)-a-1-Fucp2S,35-(1— MfFenA GH107 L2
FWf1 GH107
—3)-a-1-Fucp2S,45-(1 —4)-a-1-Fucp2S,35-(1— FWF1 GH107 52
—3)-a-1-Fucp2S-(1 —4)-a-L-Fuep2S-(1— FFA2 GH107 5254
FWf1 GH107
Fhf1 GH107
Fhf2 GH107
—?)-a-1-Fucp?S-(1—4)-a-1-Fucp?S-(?— PSAFcnA GH107 2=
P19DFcnA GH107
Fp273 GH107
Fp277 GH107
Fp279 GH107
—3)-a-L-Fucp2S-(1—4)-a-1-Fucp2S-(1— Mef1 GH107 57
—4)-at-1-Fucp?S-(1-3)-a-1-Fucp?S-(1— Mef2 GH107 58
—4)-a-1-Fucp2S-(1-3)-a-1-Fucp-(1— FunA GH168 EEYEY
Fun174A GH174
—2)-(a-1-Fucp3S-[1—3])-a-D-Manp-(1—4)-B-D-GlcpUA-(1— FdIA (lyase) PL43 61

fucoidans, and with different fucosidases showing differences in
selectivity regarding linkage types.®

Sulfatases. Exo-acting sulfatases catalyze the removal of sulfate
from the ends of the carbohydrate (reducing or non-reducing
end), while endo-acting sulfatases catalyze the cleavage of sulfate
from internal residues of the carbohydrate. The W. fucanilytica
genome harbors six sulfatase genes in their fucoidan degrading
gene cluster, but only three have been functionally characterized.
SWF1 and SFW4 have no action on native fucoidan, only on oli-
gosaccharides, but have different substrate specificity, with SWF4
removing C3 sulfates from the nonreducing end of oligosaccha-
rides with 2,3S sulfation, and SWF1 removing C2 sulfates from
the nonreducing end of oligosaccharides with 2S sulfation.%®
SWEF5 is another fucoidan endo-acting sulfatase, which selec-
tively eliminates 4O-sulfation in sulfated fucans and fucooligosac-
charides composed of alternating o-(1,3)- and o-(1,4)-linked
residues of sulfated L-fucopyranose, but the enzyme is not active
on fucoidans composed of only o-(1,3)-linked sulfated L-fucopyr-
anose residues.”* A surprisingly thermostable exo-acting sulfatase,
PsFucS1, from a Pseudoalteromonas sp. was found in the gut of a
sea cucumber; the enzyme acts on fucoidan oligosaccharides with
a thermal optimum of 68°C.°® Thermostable enzymes are interest-
ing for biorefining applications as processing at elevated tempera-
tures decreases contamination risk and allows higher conversion
rates.
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RISK OF TOXIC ELEMENTS IN BROWN SEAWEEDS

The growing interest in the application and refining of brown
seaweeds into products for human consumption and use has
raised concern about the presence of potentially toxic elements
(PTEs).*” There is lack of knowledge of whether certain ele-
ments are preferentially accumulated, but PTEs include heavy
metals arsenic, cadmium, lead, and mercury.68

In Europe, recommendations and guidelines are being devel-
oped concerning the content in products for the market. The
European Commission has set maximum levels for certain con-
taminants in foodstuffs, and the EFSA has implemented tolera-
ble daily/weekly intake levels (Table 5). In some cases,
previous set guidelines are considered no longer appropriate,
as indicated in Table 5, but not yet replaced by other recom-
mendations. Uptake of elemental compounds, including PTEs,
in seaweed is postulated to derive from the cell wall polysac-
charide components, where the functional groups (e.g., car-
boxyl, hydroxyl, and sulfate) are important for binding. In
brown seaweeds, the content of alginate and fucoidan has been
shown to correlate positively to mercury and cadmium levels,®’
whereas arsenic might interact through weak bonds. In algi-
nate, the M-blocks appear more selective for Cd** while
G-blocks have a higher affinity for Ca®*.°” In addition, high
iodine content in some species, e.g., Saccharina latissima, may
pose a potential risk for human health and a maximum tolera-
ble intake has been established (Table 5).
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Table 5. Overview of Recommendations and Maximum Levels for the Potentially Toxic Elements, Arsenic, Cadmium, Lead,
Mercury, as Well as lodine, from Different Sources

MAXIMUM TOLERABLE DAILY/
WEEKLY INTAKE LEVELS
POTENTIALLY TOXIC ELEMENTS ALGAE BROUGHT TO MARKET ACCORDING TO EFSA®
Arsenic (total) 40 mg kg™ No data No data
Arsenic (inorganic) 2mg kg™ 3mg kg™" (dry weight) 25 g kg™' body weight (b.w.)
considered no longer appropriate
Cadmium 1 mg kg™ 3'mg kg™' (dry weight), [supplements, | 2.5 pg kg™ b.w.
0.5 mg kg™" (dry weight)]
Lead 10 mg kg™ 0.5 mg kg™' (dry weight) 25 g kg™' b.w. considered no longer
appropriate
Mercury 0.1mg kg™ 0.2 mg kg~ (dry weight) 4 pg kg™ b.w. for inorganic mercury
lodine na. 2000 mg kg™ (dry weight) 60 g kg™ bwC

“Directive 2002/32/EC specifies undesired substances in animal feed; levels concern feed with 12% moisture.
°Maximum tolerable weekly intake (TWI), as established from the European Food Safety Authority (EFSA).

“lodine is based on an average body weight of 70 kg.

Table adapted from Jonsson and Nordberg Karlsson, 2023.%7

Arsenic content can be effectively reduced with hot aqueous
treatment. lodine content has also been significantly reduced
by hot water and pH shift treatments,”®’" showing that reduc-
tion can be achieved by simple scalable methods. Cadmium is
of concern, while lead and mercury are of lesser concern and
usually below the tolerable levels. Many methods that reduce
arsenic and iodine cause an undesirable concentrating effect of
cadmium, probably because of complexation with alginate
(especially M-block).®” Use of chelating agents such as EDTA,
especially in combination with ultrasound, has shown signifi-
cant cadmium reduction in L. hyperborea.”* Enzymatic conver-
sion has received limited attention in this context but could
play a role in PTE reduction. Taking alginate as an example,
epimerases may reduce M-block in favor of G-block alginate;
likewise, selective alginate lyase catalysis can remove mannu-
ronic acid. Clearly, analyses of PTEs and iodine must be
included in seaweed biorefineries and protocols must be intro-
duced for their removal, where necessary.

ENZYME DISCOVERY

The great potential of seaweed polysaccharides will require
the discovery of new enzymes that target these polysaccharides
for purification, fragmentation, and modification purposes.
While such enzymes are available for polysaccharides from ter-
restrial systems, much less emphasis has been put into enzyme
discovery from marine systems. Traditionally, such discovery
endeavors have started from isolating microorganisms from the
substrate in question, followed by enzyme purification or PCR
amplification of relevant enzyme genes. The advent of mass
DNA sequencing technology has more recently favored strat-
egies by which metagenomes from relevant (seaweed biomass
degrading) environments have been sequenced and clustered
into separate metagenome assembled genomes. Another hot-
spot environment for the discovery of seaweed bioprocessing

is the gut microbiome of seaweed-eating animals, like sea
cucumber, snails, etc. Relevant enzyme sequences can subse-
quently be identified in the genomic sequences using search
algorithms based on sequence similarity or structural similarity
to already known proteins, or by close genomic proximity to
genes involved in the same pathways, which, in bacteria typi-
cally are in so-called polysaccharide utilization loci that are
coregulated to be transcribed simultaneously in the presence of
the targeted substrate. A third option is to make direct use of
the vast amounts of sequence data available in public reposito-
ries such as GenBank (https://www.ncbi.nlm.nih.gov/) using
targeted sequence search strategies. Heterologous expression
of the identified enzyme gene sequences in E. coli, yeast, or fil-
amentous fungi, followed by purification of the expressed pro-
teins, allows for a detailed characterization of the enzymes to
determine their substrate specificity, optimal reaction condi-
tions, and specific product formation.

Outlook and Impact

To understand the functional and very promising bioactivity
effects of seaweed polysaccharides, and exploit these in new
products, it is important to retain the specific structural traits of
the polysaccharides and obtain pure, homogeneous, and well-
characterized products. Enzyme-assisted processing enables
such production, thus allowing distinct functional properties to
be made from mass reared seaweed. Endo-acting enzymes that
catalyze depolymerization of alginate, laminarin, and fucoidan
will generally produce a population of oligomeric products
having different backbone length, and hence different proper-
ties. A new wave of enzyme research is expected to target the
details of enzyme action and function to achieve more homoge-
neous products directly by enzymatic processes. More well-
defined products obtained in this way are foreseen to foster
new high-value applications of seaweed carbohydrates with
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verified beneficial bioactivity effects in a range of different
products. Such processing requires discovery of new enzymes
with distinct activities on brown seaweed polysaccharides but
will ultimately lead to sustainable and environmentally friendly
production methods.

The substantiation of the beneficial effects of products obtained
by enzyme-assisted processing is still at the research stage, but sev-
eral of the bioactivity effects reported, e.g., enzymatically modified
fucoidan” or laminarin®® molecules, may pave the way for the
manufacture of unique, beneficial, and high-value products.

Biorefining is principally defined as the manufacturing of
multiple products from one feedstock. Biorefining via cascade
valorization involving fractionation of brown seaweed side
streams after a primary alginate extraction has shown resource
management gains and potential business benefits.”’ However,
it is presently uncertain whether such full biorefining of whole
seaweeds or whether smaller scale, targeted reactions on por-
tions of the seaweed, designated for upgrading of specific poly-
saccharides, will drive the industrial development. Regardless,
the ability of enzymes to catalyze robust, precise modifications
that provide superior products for novel, high-value applica-
tions is expected to play a role in brown seaweeds refining to
support a new global “blue bioeconomy” based on seaweed
production from new seaweed farming in the Northern Hemi-
sphere. Apart from offering new products for medicine, food
and personal products, it is an important asset that large-scale
seaweed cultivation offers substantial ecosystem services that
contribute to climate change mitigation.
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